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Abstract. In this paper we introduce a new 3D object retrieval model
inspired by some well-known mechanisms of the human brain: viewer-
centric recognition, Markovian estimations, and fusion of information
originating from the visual and vestibular subsystems. We have built a
Hidden Markov Model (HMM) framework where 2D object views corre-
spond to states, observations are coded by compact edge and color sen-
sitive descriptors, and orientation sensors are used to secure temporal
inference by estimating transition probabilities between states. Our first
evaluation results, over a database of 100 3D objects, are very encour-
aging: the fast and memory efficient new method outperformed previous
models.
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1 Introduction and Motivation

We introduce an efficient bio-inspired 3D object retrieval approach which can be
implemented with very limited memory and processing power. Our motivation
is to use ideas (viewer-centric object models with Markovian inference and in-
formation fusion) originating from the operation of the brain but also to avoid
the complexity of hierarchical deep neural networks as it would be a direct copy
of nature’s successful mechanisms. In our research we focus on a relatively sim-
ple task: how to recognize/retrieve 3D objects by several 2D views taken from
different directions.
Humans have only access to a limited subset of reality due to the limitation of
attentional capacity and of sensitivity. As a result our experiences do not repli-
cate the real world but rather create a construction or representation of it with
prediction and estimation. One example is the temporal difference (TD) learning
algorithm which has received attention in the field of neuroscience a long time
ago [16]. TD mechanisms consider that subsequent predictions are correlated in
some sense: TD learning adjusts predictions to match other predictions about
the future. Evaluation of Markovian processes can be considered as a rough ap-
proximation of this, moreover Hidden Markov Models are able to make efficient
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predictions considering the difference between the real world and its sensations
with the help of probability functions. How we make representations of uncer-
tainty greatly depends on the integration of data over time. The extent to which
past events are used to represent uncertainty seems to vary over the cortex: pri-
mary visual cortex responds to rapid perturbations in the environment, while
frontal cortices encode the longer term contexts within which these perturba-
tions occur [9].
Information fusion is also very important in the creation of the brain’s represen-
tations. Several examples for this are the different phenomena of vestibular and
visual information co-processing. For example during long-drawn head rotations
with the eyes closed, the elasticity of the cupula (a structure in the vestibular
system providing the sense of spatial orientation) gradually restores it to its up-
right position. Thus the drive to the optokinetic response stops (misleadingly
informing the brain that there is no motion). When opening the eyes in such
situations, the world is seen moving and people feel giddy.
While the exact mechanisms of interaction between the different modalities are
not always clear for the researchers, we will fuse orientation and visual infor-
mation in a viewer-centered object recognition model. In cognitive science the
recognition of objects from different views are described by two competing the-
ories: according to the so-called object-centered approach [1] the structural de-
scription of simple parts play important role without explicit object represen-
tation from the different views. This can be imagined similar to the computer
vision algorithms for object recognition with SIFT-like features [12]. In contrary,
viewer-centered theory, supported e.g. by [7], suggests that this is done based
on matching specific views to a set of templates, which requires explicit viewer-
specific object representations.
Convolutional Neural Networks have very strong biological motivation and have
been extensively used for image-based recognition, detection, retrieval, and im-
age segmentation. However, their complexity (also energy and memory require-
ments) is quite large to be applied for real-time image based recognition in
embedded or mobile systems. What we knew before and has been shown ex-
perimentally in recent developments is that simple approximations to input or
internal data representations can still result in satisfactory performance. For
example the so called XNOR-Networks, where both the filters and the input
to convolutional layers are binary, run 58× faster convolutional operations and
show 32× memory savings [15].
Following the above bio-inspired concepts we introduce a retrieval model with
the following features:

– it is viewer-centered with the storage of very limited number of 2D views,
– it fuses visual and orientation information,
– it utilizes the inference in temporal sequences of signals (Markovian),
– the relation of observations and hidden model states can be estimated with

simple correlations,
– it relies on compact descriptors computed very fast,
– it can be successfully used for real-time video object retrieval with lightweight

devices.
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There are two main reasons we are not using deep neural network models.
First, we can implement the aimed concepts (Markovian inference, information
fusion, viewer-centric object models) very efficiently in a HMM framework. Sec-
ond, we have knowledge of efficient compact descriptors, and can use the ori-
entation information directly in the Markovian model for the temporal support
(as explained later), i.e. there is no need for time consuming training and opti-
mization of millions of parameters of the neural structures.
In the next Section we give a short overview of related papers. Then the proposed
object views, as hidden states of a Markov model, state transitions, observable
features, and the decoding and retrieval steps are defined in consecutive sub-
sections. Section Experiments and Evaluations contains experimental data and
analysis followed by Summary.

2 A Brief Overview of Related Papers

Optical object retrieval and recognition is a very large topic with thousands
of theoretical articles and applications, now we focus only on some which are
closely related to our aims and motivations.
HMMs are often used in different recognition problems such as speech, musical
sound, or human activity recognition but we relatively rarely meet them in the
recognition of 2D or 3D visual objects. This is natural since ordered sequences
of features are needed to construct HMM models. In [10] affine invariant image
features are built on the contours of objects, and the sequence of such features
are fed to the HMM. This approach is interesting but seemed to be too unnatural
to have later followers.
In [5] authors presented an approach for face recognition using Singular Values
Decomposition (SVD) to extract relevant face features, and HMMs as classifier.
In order to create the HMM model the 2 dimensional face images had to be
transformed into 1 dimensional observation sequences. For this purpose each face
image was divided into overlapping blocks with the same width as the original
image and a given height, and the singular values of these blocks were used as
descriptors. A face image was divided into seven distinct horizontal regions: hair,
forehead, eyebrows, eyes, nose, mouth and chin forming seven hidden states in
the Markov model. While the algorithm was tested on two standard databases,
the advantage of the HMM model over other approaches was not discussed.
The method of Torralba et al. [17] seems to be more close to a real-life temporal
sequence: HMM was used for place recognition based on the sequences of visual
observations of the environment created by a low-resolution camera. It was also
investigated how the visual context affects the recognition of objects in complex
scenes. There is no doubt that this approach has real cognitive motivation and
relevance compared to those above.
Gammeter et al. [8] used accelerometer and magnetic sensor to help the visual
recognition of the landscape. Clustered SURF (Speeded Up Robust Features)
features were quantized using a vocabulary of visual words, learnt by k-means
clustering. For tracking objects the FAST corner detector was combined with
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sensor tracking. Because of the small storage capacity of the mobile device a
server-side service was used to store the necessary information for the algorithm.
It is obvious that video gives much more visual information about 3D objects
than 2D projections. Local feature descriptors (like SIFT, FAST, etc.) are often
used for view-centered recognition. In [14] the underlying topological structure of
an image set was represented as a neighborhood graph of local features. Motion
continuity in the query video was exploited for the recognition of 3D objects.
The most similar viewer-centered HMM based 3D object retrieval method to
ours was published by Jain et al. [11]. However, there are many differences to
our work and many ambiguous details in [11]: it is not clear how the crucial
emission and transition probabilities were estimated and also the dimension of
the applied image descriptor (13) seems to be too small for real-life applications.
The dataset in their tests included only gray-scale CGI without texture and no
orientation sensor was used during the recognition.
Our early work, to utilize orientation information for object retrieval, can be
found in [3]. Later we modified our method [4] to maximize a fitness function over
a sequence of observations, based on the Hough transformation paradigm. While,
as we have demonstrated by the above examples, the use of HMMs for object
recognition is often a bit unnatural, turning our previous Hough framework to
HMM is obvious and is also biologically motivated. As will be shown, our recent
HMM model has better hit-rate and smaller complexity and encapsulates the
bio-inspired concepts described above.

3 Object Retrieval with HMM

To achieve object retrieval will need to build HMM models for all elements of
the set of objects (M). Then, based on observations, we find the most probable
state sequence for all objects models. The state sequence among these, which
is the most similar to the observation sequence, will belong to the object being
retrieved.

3.1 Object Views as States in a Markov Model

Let S = {S1, · · ·, SN} denote the set of N hidden states of a model. In each t
index step this model is described as being in one qt ∈ S state, where t = 1, ···, T .

In our approach the states can be considered as the 2D views (or the average
of some neighboring views) of a given object model. This can be easily imag-
ined as a camera is targeting towards and object from a relative elevation and
relative azimuth. The number of possible states should be kept low, otherwise
the state transition matrix (A) would contain too small numbers and finding
the most probable state sequence would be too unstable. On the other hand,
small number of states would mean that quite different views of some objects
should be represented by the same descriptors, resulting in decreased similarity
of model these views and actual test observations. Thus it is easy to see that the
generation of states should be designed carefully. Often Gaussian mixtures are
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used to combine the views of similar directions. Now we use static subdivision
of the circle of 360◦, into 2, 4, 6, and 8 uniform parts with 180◦, 90◦, 60◦, and
45◦ correspondingly, with surprisingly good results as given in Section 4.
We define the initial state probabilities π = {πi}1≤i≤N based on the orientation
range of states:

πi = P (q1 = Si) =
α(Si)

360
(1)

where α(Si) is the size of orientation aperture of state Si given in degree.

3.2 State Transitions

Between two steps the model can undergo a change of states according to a set of
transition probabilities associated with each state pairs. In general the transition
probabilities are:

aij = P (qt = Sj |qt−1 = Si) (2)

where i and j indices refer to states of the HMM, aij ≥ 0, and for a

given state
∑N

j=1 aij = 1 holds. The transition probability matrix is denoted
by A = {aij}1≤i,j≤N .
To build a Markov model means learning its parameters (π, A, and emission
probabilities introduced later) by examining typical examples. However, our case
is special: the probability of going from one state to an other severely depends
on the users’s behavior, interest and also on the frame rate of the camera. Thus
we can not follow the traditional way, to use the Baum-Welch algorithm for pa-
rameter estimation based on several training samples, but can directly compute
transition probabilities based on geometric probability as follows.
First define ∆t−1,t as the orientation difference between two successive observa-
tions:

∆t−1,t = α(ot)− α(ot−1). (3)

Now define Ri as the aperture interval belonging to state Si by borderlines:

Ri = [Smin
i , Smax

i [. (4)

The back projected aperture interval is the range of orientation from where the
previous observation should originate:

Lj = [Smin
j −∆t−1,t, S

max
j −∆t−1,t[. (5)

Now we have arrived to estimate the transition probability by the geometrical
probability concept applied on the intersection of Lj and Rj :

aij = P (qt = Sj |qt−1 = Si) =
α(Lj ∩Ri)

α(Lj)
. (6)

Please see Figure 1 for illustration.
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Fig. 1. Geometrical interpretation of transition probabiliites.

3.3 Hidden States Approximated by Observations with Compact
Descriptors

The appearance of objects may significantly differ from those made during model
generation under controlled circumstances. The changes in illumination, color
balance, viewing angle, geometric distortion and image noise can result in heavily
distorted feature descriptors. Thus observations only resemble the descriptors of
the model states. Let O = {o1, o2, ···, oT } denote the set of observation sequence.
The emission probability of a particular ot observation for state Si is defined as

bi(ot) = P (ot|qt = Si) (7)

In [4] we have shown that the CEDD (Color and Edge Directivity Descrip-
tor) [2] is a robust low dimensional descriptor for object recognition. Being area
based, pixels are classified into one of 6 texture classes (non-edge, vertical, hori-
zontal, 45 and 135 degree diagonal, and non-directional edges). For each texture
class a (normalized and quantized) 24 bin color histogram is generated, each bin
representing colors obtained by the division of the HSV color space, resulting
in feature vectors of dimension 144 (6×24). The similarity of CEDD vectors is
computed by the Tanimoto coefficient:

T (ei, cj) =
eTi cj

eTi ei + cTj cj − eTi cj
(8)

where eTi is the transpose vector of the query descriptor and ci denotes the
descriptors of object views. Rotational invariance can be achieved as given in
[3]. Now eq. 7 can be rewritten as:
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bi(ot) =
T (C(Si), C(ot))∑N
j=1 T (C(Sj), C(ot))

(9)

where C stands for the descriptor generating function of CEDD. Since each
model state can cover a large directional range we will use the average CEDD
vector, of available model samples within, to represent the whole state with a
single descriptor.
Now we have the complete set of parameters of all HMMs denoted by λk =
(A, b, π), k ∈ M . The task is to find the most probable state sequence Ŝk, for
all possible candidate objects, based on observations.

3.4 Decoding for Retrieval

We use the well-known Viterbi algorithm to get the state sequence with the
maximum likelihood. The variable δt gives the highest probability of producing
observation sequence o1, o2, · · ·, ot when moving along a hidden state sequence
q1, q2, · · ·, qt−1 and getting into qt = Si, i.e.

δt(i) = maxP (q1, q2, · · ·, qt = Si, o1, o2, · · ·, ot|λ) (10)

It can be calculated inductively as

1. Initialization:
δ1(i) = πibi(o1), 1 ≤ i ≤ N (11)

2. Recursion:
δt+1(j) = bj(ot+1) max

i
[aijδt(i)], 1 ≤ j ≤ N (12)

Finally, we can choose the most probable state î ending at T:

î = argmax
i

[δT (i)] (13)

To achieve object retrieval we have to find the most probable state sequence
Ŝk with the above steps for all possible candidate objects. Now, to select the
winner object, we have to compare the observations with the most probable
state sequence:

k̂ = arg max
∀k∈M

(

∑N
i=1 T (C(oi), C(Ŝk,i))

N
) (14)

4 Experiments and Evaluations

4.1 Test Dataset

The COIL-100 dataset [13] includes 100 different objects; 72 images of each ob-
ject were taken at pose intervals of 5◦. We evaluated retrieval with clear and
heavily distorted queries using Gaussian noise and motion blur. The imnoise
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function of Matlab, with standard deviation sd = 0.012, was used to generate
additive Gaussian noise (GN) while motion blur (MB) was made by fspecial with
parameters len = 15, and angle θ = 20◦. Some examples of the queries are shown
in Figure 2.
For different tests different numbers (2, 4, 6, 8) of hidden states were generated
by equally dividing the full circle. Each state was represented with its average
CEDD descriptor vector.
To estimate the relative orientation of the camera with used the same built in
IMU (Inertial Measurement Unit) sensor as in [4] with around 4.5◦ average ab-
solute error with a 5.25◦ variance. The evaluation of our method with textured
and varying backgrounds is for future work.

Fig. 2. First three lines: Clear samples from COIL-100. 4th line: Example queries loaded
with Gaussian additive noise. 5th line: Example queries loaded with motion blur.

4.2 Hit-rate

The hit-rate of retrieval is measured by taking the average of 10 experiments
with all 100 objects with randomly generated queries (the orientation angle
of subsequent queries were increased monotonically). As shown in Figure 3 for
different quality queries, as the number of queries increases the hit-rate increases
monotonically. It is also true that higher number of states gives better results.
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We tested no more states than 8, where it reached the maximum performance
in most cases.
For comparison with the method of [4] we included the best results of the Voting
Candidates algorithm denoted by VCI. There is an obvious 2-6% gain over VCI
observable. Please note, that the same visual descriptors and orientation sensor
was used by VCI in previous tests.

Fig. 3. First graph: average hit-rate with clear samples from COIL-100. Second graph:
Queries loaded with Gaussian additive noise. Third graph: Queries loaded with motion
blur.
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4.3 Running Time and Memory Requirements

Tests were run on a Samsung SM-T311 tablet equipped with Android 4.2.2 Jelly
Bean, 1 GB RAM, and ARM Cortex A9 Dual-Core 1.5 GHz Processor. No code
optimization or parallelism was carried out and only the CPU was used during
calculations. As given in Table 1 even for 8 queries the whole processing chain is
within 1 second on the specified mobile computing hardware. This is a fraction
of the complexity of VCI [4].

Table 1. Running times in seconds for the retrieval of one object from 100.

Phase Number of Query Views (Nq
f )

2 4 6 8

CEDD generation 0.08 0.16 0.24 0.32
HMM evaluations 0.11 0.15 0.18 0.23

SUM 0.19 0.31 0.42 0.55

The advantage of using compact descriptors is the very limited memory re-
quirement of object models. A CEDD descriptor occupies 144 Bytes in memory
and orientation can be stored in 4 Bytes. For 100 objects and 8 states we need
to store roughly 120 KB (100×8×148 Bytes).

5 Summary

The main purpose and contribution of our paper is twofold:

– building a bio-inspired object retrieval framework with Markovian inference
and multimodal information fusion in a viewer-centric model, and

– showing that its implementation is robust and resource efficient to be used
in mobile devices.

We presented our first results over a dataset of 100 3D objects with 7200 views
using clear and noisy queries. While results are better than with our previous
model, still there is a lot to do: we are developing a clustering technique to build
optimal states instead of the uniformly distributed states and should work also
on automatic object segmentation and tracking.
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